14 research outputs found

    Modeling the origin of parkinsonian tremor

    Get PDF
    poster abstractEven though much is known about the biophysics, anatomy and physiology of basal ganglia networks, the cellular and network basis of parkinsonian tremor remains an open question. Multiple experimental data suggest that the physiological origin of parkinsonian tremor is different from the physiological origin of other parkinsonian motor symptoms. However, the exact origin of the tremor genesis in Parkinson’s disease remains unknown. A large body of experimental evidence supports the hypothesis, that the tremor arises due to pathological interaction of potentially oscillatory cells within the loop formed by basal ganglia and thalamocortical circuits. We suggest a model of this circuitry, which helps to clarify this potential mechanism of tremor genesis

    The pathophysiology of essential tremor and Parkinson's tremor

    No full text
    Item does not contain fulltextWe review recent evidence about the pathophysiology of essential tremor and tremor in Parkinson’s disease. We believe that a network perspective is necessary to understand this common neurological symptom, and that knowledge of cerebral network dysfunction in tremor disorders will help to develop new therapies. Both essential tremor and Parkinson’s tremor are associated with increased activity in the cerebellothalamocortical circuit. However, different pathophysiological mechanisms lead to tremulous activity within this circuit. In Parkinson’s disease, evidence suggests that dopaminergic dysfunction of the pallidum triggers increased activity in the cerebellothalamocortical circuit. In essential tremor, GABAergic dysfunction of the cerebellar dentate nucleus and brain stem, possibly caused by neurodegeneration in these regions, may lead to tremulous activity within the cerebellothalamocortical circuit. In both disorders, network parameters such as the strength and directionality of interregional coupling are crucially altered. Exciting new research uses these network parameters to develop network-based therapies, such as closed-loop deep brain stimulation and transcranial magnetic or direct current stimulation.10 p
    corecore